English

Prove the Following Result `Cos(Sin^-1 3/5+Cot^-1 3/2)=6/(5sqrt13)` - Mathematics

Advertisements
Advertisements

Question

Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`

Solution

LHS = `cos(sin^-1  3/5+cot^-1  3/2)`

`=cos(sin^-1  3/5+tan^-1  2/3)`

`=cos[cos^-1sqrt(1-(3/5)^2)+cos^-1  1/sqrt(1+(2/3)^2)]`

`=cos(cos^-1  4/5+cos^-1  3/sqrt13)`

`=cos{cos^-1[4/5xx3/sqrt13-sqrt(1-(4/5)^2)sqrt(1-(3/sqrt13)^2]}`

`=cos{cos^-1[12/(5sqrt13)-6/(5sqrt13)]}`

`=cos{cos^-1[6/(5sqrt13)]}`

`=6/(5sqrt13)=`RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.08 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 2.2 | Page 54

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`tan(cos^-1  8/17)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`4sin^-1x=pi-cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×