Advertisements
Advertisements
Question
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
Options
`pi/2`
`(5pi)/3`
`(10pi)/3`
0
Solution
(d) 0
We have
\[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right) = \cos^{- 1} \left\{ \cos\left( 2\pi - \frac{\pi}{3} \right) \right\} + \sin^{- 1} \left\{ \sin\left( 2\pi - \frac{\pi}{3} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{3} \right) \right\} + \sin^{- 1} \left\{ - \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{3} \right) \right\} - \sin^{- 1} \left\{ \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{\pi}{3} - \frac{\pi}{3}\]
\[ = 0\]
APPEARS IN
RELATED QUESTIONS
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin pi/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 6).
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Find the domain of `sec^(-1)(3x-1)`.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The period of the function f(x) = tan3x is ____________.
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
Find the value of `sin^-1(cos((33π)/5))`.