English

The Value of Cos − 1 ( Cos 5 π 3 ) + Sin − 1 ( Sin 5 π 3 ) is (A) π 2 (B) 5 π 3 (C) 10 π 3 (D) 0 - Mathematics

Advertisements
Advertisements

Question

The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 

Options

  • `pi/2`

  • `(5pi)/3`

  • `(10pi)/3`

  • 0

MCQ

Solution

(d) 0

We have
\[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right) = \cos^{- 1} \left\{ \cos\left( 2\pi - \frac{\pi}{3} \right) \right\} + \sin^{- 1} \left\{ \sin\left( 2\pi - \frac{\pi}{3} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{3} \right) \right\} + \sin^{- 1} \left\{ - \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \cos^{- 1} \left\{ \cos\left( \frac{\pi}{3} \right) \right\} - \sin^{- 1} \left\{ \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{\pi}{3} - \frac{\pi}{3}\]
\[ = 0\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 121]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 20 | Page 121

RELATED QUESTIONS

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of cos−1 (cos 6).


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find the domain of `sec^(-1)(3x-1)`.


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The period of the function f(x) = tan3x is ____________.


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×