Advertisements
Advertisements
Question
If 4 cos−1 x + sin−1 x = π, then the value of x is
Options
`2/3`
`1/sqrt2`
`sqrt3/2`
`2/sqrt3`
Solution
(c) `sqrt3/2`
We know that
\[\sin^{- 1} x + \cos^{- 1} x = \frac{\pi}{2}\]
\[4 \cos^{- 1} x + \sin^{- 1} x = \pi\]
\[ \Rightarrow 4 \cos^{- 1} x + \frac{\pi}{2} - \cos^{- 1} x = \pi\]
\[ \Rightarrow 3 \cos^{- 1} x = \pi - \frac{\pi}{2}\]
\[ \Rightarrow 3 \cos^{- 1} x = \frac{\pi}{2}\]
\[ \Rightarrow \cos^{- 1} x = \frac{\pi}{6}\]
\[ \Rightarrow x = \cos\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{\sqrt{3}}{2}\]
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Find the value of `tan^-1 (x/y)-tan^-1((x-y)/(x+y))`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
`tan^-1 2/3=1/2tan^-1 12/5`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The value of sin `["cos"^-1 (7/25)]` is ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.