English

What is the Value of Cos−1 `(Cos (2x)/3)+Sin^-1(Sin (2x)/3)?` - Mathematics

Advertisements
Advertisements

Question

What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`

Solution

`cos^-1(cos  (2x)/3)+sin^-1(sin  (2x)/3)`

`cos^-1(cos  (2x)/3)+sin^-1{sin(pi/3)}`         `[because "Range of sine is"[-pi/2, pi/2]; pi/3in  [-pi/2,pi/2] "and range of cosine is" [0,pi] ; (2pi)/3in [0, pi]]`

`=(2pi)/3+pi/3`

= π

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 8 | Page 117

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (13pi)/7)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Solve: `cos(sin^-1x)=1/6`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The period of the function f(x) = tan3x is ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×