English

Prove the Following Result: `Tan^-1 1/7+Tan^-1 1/13=Tan^-1 2/9` - Mathematics

Advertisements
Advertisements

Question

Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`

Solution

LHS = `tan^-1  1/7+tan^-1  1/13`

`=tan^-1((1/7+1/13)/(1-1/7xx1/13))`     `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

`=tan^-1((20/91)/(90/91))`

`=tan^-1  2/9=` RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.11 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 1.1 | Page 82

RELATED QUESTIONS

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`tan^-1x+2cot^-1x=(2x)/3`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×