Advertisements
Advertisements
Question
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Solution
`sin(1/2cos^-1 4/5)=sin{1/2xx2sin^-1+-sqrt((1-4/5)/2)}` `[becausecos^-1x=2sin^-1+-sqrt((1-x)/2)]`
`=sin(sin^-1+-1/sqrt10)`
`=+-1/sqrt10`
APPEARS IN
RELATED QUESTIONS
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is