Advertisements
Advertisements
Question
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Solution
Let \[y = \sin^{- 1} \frac{1}{3}\]
Then, \[\sin{y} = \frac{1}{3}\]
Now,
\[\cos{y} = \sqrt{1 - \sin^2 y}\]
\[\Rightarrow \cos{y} = \sqrt{1 - \frac{1}{9}} = \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{3}\]
\[\cos\left( 2 \sin^{- 1} \frac{1}{3} \right) = \cos(2y)\]
\[ = \cos^2 y - \sin^2 y \left[ \because \cos 2x = \cos^2 x - \sin^2 x \right]\]
\[ = \left( \frac{2\sqrt{2}}{3} \right)^2 - \left( \frac{1}{3} \right)^2 \]
\[ = \frac{8}{9} - \frac{1}{9}\]
\[ = \frac{7}{9}\]
∴ \[\cos\left( 2 \sin^{- 1} \frac{1}{3} \right) = \frac{7}{9}\]
APPEARS IN
RELATED QUESTIONS
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`4sin^-1x=pi-cos^-1x`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Evaluate: `cos(sin^-1 3/5+sin^-1 5/13)`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
tanx is periodic with period ____________.