Advertisements
Advertisements
Question
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Solution
Applying parametric differentiation \[\frac{dx}{d\theta}\] =2a − 2acos2 \[\theta\] \[\frac{dy}{d\theta}\] = 0 + 2asin2 \[\theta\] \[\frac{dy}{dx}\] = \[\frac{dy}{d\theta} \times \frac{d\theta}{dx} = \frac{\sin2\theta}{1 - \cos2\theta}\] Now putting the value of \[\theta\] = \[\frac{\pi}{3}\]
\[\frac{dy}{dx}_\theta = \frac{\pi}{3} = \frac{\sin2\left( \frac{\pi}{3} \right)}{1 - \cos2\left( \frac{\pi}{3} \right)}\]
\[ = \frac{\frac{\sqrt{3}}{2}}{1 + \frac{1}{2}}\]
\[ = \frac{\frac{\sqrt{3}}{2}}{\frac{3}{2}} = \frac{1}{\sqrt{3}}\]
So,
\[\frac{dy}{dx}\] \[\frac{1}{\sqrt{3}}\] at \[\theta = \frac{\pi}{3}\] .
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
`sin^-1(sin12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
`sin(sin^-1 1/5+cos^-1x)=1`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Show that `2tan^-1x+sin^-1 (2x)/(1+x^2)` is constant for x ≥ 1, find that constant.
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
Write the value of sin−1 (sin 1550°).
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `sin^-1(-1/2)`
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\]
then α − β =
If tan−1 3 + tan−1 x = tan−1 8, then x =
If tan−1 (cot θ) = 2 θ, then θ =
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.