English

The Value of Sin ( 2 ( Tan − 1 0 . 75 ) ) is Equal to (A) 0.75 (B) 1.5 (C) 0.96 (D) Sin − 1 1.5 - Mathematics

Advertisements
Advertisements

Question

The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 

Options

  • 0.75

  • 1.5

  • 0.96

  • `sin^-1 1.5`

MCQ

Solution

\[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right) = \sin\left( 2 \tan^{- 1} 0 . 75 \right)\]
\[ = \sin\left( \sin^{- 1} \frac{2 \times 0 . 75}{1 + \left( 0 . 75 \right)^2} \right)\]
\[ = \sin\left( \sin^{- 1} 0 . 96 \right)\]
\[ = 0 . 96\]

Hence, the correct answer is option (c).

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 122]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 32 | Page 122

RELATED QUESTIONS

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin^-1x=pi/6+cos^-1x`


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of sin (cot−1 x).


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×