Advertisements
Advertisements
Question
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Solution
We know that
cosec-1 (cosec θ) = θ, [-π/2,0) ∪ (0,π/2]
`cosec^-1(cosec (3pi)/4)=cosec^-1[cosec(pi-pi/4)]`
`=cosec^-1(cosec pi/4)`
`=pi/4`
APPEARS IN
RELATED QUESTIONS
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`tan{cos^-1(-7/25)}`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .