English

Write the Principal Value of Sin − 1 { Cos ( Sin − 1 1 2 ) } - Mathematics

Advertisements
Advertisements

Question

Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]

Solution

\[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\} = \sin^{- 1} \left\{ \cos\left[ \sin^{- 1} \left( \sin\frac{\pi}{3} \right) \right] \right\}\]
\[ = \sin^{- 1} \left[ \cos\left( \frac{\pi}{3} \right) \right]\]
\[ = \sin^{- 1} \left[ \frac{1}{2} \right]\]
\[ = \sin^{- 1} \left[ \sin\left( \frac{\pi}{3} \right) \right]\]
\[ = \frac{\pi}{3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 51 | Page 119

RELATED QUESTIONS

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


If sin [cot−1 (x+1)] = cos(tan1x), then find x.


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin12)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate:

`cosec{cot^-1(-12/5)}`


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin(sin^-1  1/5+cos^-1x)=1`


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


If tan−1 (cot θ) = 2 θ, then θ =

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


tanx is periodic with period ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×