English

If U = Cot − 1 √ Tan θ − Tan − 1 √ Tan θ Then , Tan ( π 4 − U 2 ) = (A) √ Tan θ (B) √ Cot θ (C) Tan θ (D) Cot θ - Mathematics

Advertisements
Advertisements

Question

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]

Options

  • `sqrt(tantheta`

  • `sqrt(cottheta)`

  •  tan θ

  • cot θ

MCQ

Solution

(a) `sqrt(tantheta`
Let \[y = \sqrt{\tan\theta}\]
Then, 
\[u = \cot^{- 1} \sqrt{\tan\theta} - \tan^{- 1} \sqrt{\tan\theta}\]
\[ \Rightarrow u = \cot^{- 1} y - \tan^{- 1} y\]
\[ \Rightarrow u = \frac{\pi}{2} - 2 \tan^{- 1} y \left[ \because \tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 2 \tan^{- 1} y = \frac{\pi}{2} - u \]
\[ \Rightarrow \tan^{- 1} y = \frac{\pi}{4} - \frac{u}{2}\]
\[ \Rightarrow y = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right)\]
\[ \Rightarrow \sqrt{\tan\theta} = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) \left[ \because y = \sqrt{\tan\theta} \right]\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 120]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 12 | Page 120

RELATED QUESTIONS

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin3)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Solve: `cos(sin^-1x)=1/6`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Prove that:

`tan^-1  (2ab)/(a^2-b^2)+tan^-1  (2xy)/(x^2-y^2)=tan^-1  (2alphabeta)/(alpha^2-beta^2),`   where `alpha=ax-by  and  beta=ay+bx.`


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×