Advertisements
Advertisements
Question
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
Options
`sqrt(tantheta`
`sqrt(cottheta)`
tan θ
cot θ
Solution
(a) `sqrt(tantheta`
Let \[y = \sqrt{\tan\theta}\]
Then,
\[u = \cot^{- 1} \sqrt{\tan\theta} - \tan^{- 1} \sqrt{\tan\theta}\]
\[ \Rightarrow u = \cot^{- 1} y - \tan^{- 1} y\]
\[ \Rightarrow u = \frac{\pi}{2} - 2 \tan^{- 1} y \left[ \because \tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2} \right]\]
\[ \Rightarrow 2 \tan^{- 1} y = \frac{\pi}{2} - u \]
\[ \Rightarrow \tan^{- 1} y = \frac{\pi}{4} - \frac{u}{2}\]
\[ \Rightarrow y = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right)\]
\[ \Rightarrow \sqrt{\tan\theta} = \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) \left[ \because y = \sqrt{\tan\theta} \right]\]
\[\]
APPEARS IN
RELATED QUESTIONS
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`sin^-1x=pi/6+cos^-1x`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
If tan−1 3 + tan−1 x = tan−1 8, then x =
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .