Advertisements
Advertisements
Question
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
Solution
`tan(2tan^-1 1/5-pi/4)=tan(2 tan^-1 1/5-tan^-1 1)`
`=tan[tan^-1{(2xx1/5)/(1-(1/5)^2)}-tan^-1 1]` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan[tan^-1{(2/5)/(24/25)}-tan^-1 1]`
`=tan[tan^-1 5/12+tan^-1 1]`
`=tan[tan^-1((5/12-1)/(1+5/12))]` `[becausetan^-1x-tan^-1y=tan^-1((x+y)/(1+xy))]`
`=tan[tan^-1((-7/12)/(17/12))]`
`=tan[tan^-1 -7/17]`
`=-7/17`
APPEARS IN
RELATED QUESTIONS
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin4)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot (4pi)/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of tan−1x + tan−1 `(1/x)`for x > 0.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
If sin−1 x − cos−1 x = `pi/6` , then x =
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If tan−1 3 + tan−1 x = tan−1 8, then x =
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`