English

Solve the Following Equation For X: Tan−1(X + 2) + Tan−1(X − 2) = Tan−1 `(8/79)`, X > 0 - Mathematics

Advertisements
Advertisements

Question

Solve the following equation for x:

tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0

Solution

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

∴ tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`

⇒ `tan^-1((x+2+x-2)/(1-(x+2)xx(x-2)))=tan^-1  8/79`

⇒ `(2x)/(1-x^2+4)=8/79`

⇒ `x/(5-x^2)=4/79`

⇒ `79x=20-4x^2`

⇒ `4x^2+79x-20=0`

⇒ `4x^2+80x-x-20=0`

⇒ `(4x-1)(x+20)=0`

⇒ `x=1/4 or - 20`

∴ `x=1/4`       `[becausex>0]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.11 [Page 82]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.06 | Page 82

RELATED QUESTIONS

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


`sin^-1  63/65=sin^-1  5/13+cos^-1  3/5`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of sin (cot−1 x).


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


Find the domain of `sec^(-1)(3x-1)`.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×