Advertisements
Advertisements
Question
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
Solution
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
∴ tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`
⇒ `tan^-1((x+2+x-2)/(1-(x+2)xx(x-2)))=tan^-1 8/79`
⇒ `(2x)/(1-x^2+4)=8/79`
⇒ `x/(5-x^2)=4/79`
⇒ `79x=20-4x^2`
⇒ `4x^2+79x-20=0`
⇒ `4x^2+80x-x-20=0`
⇒ `(4x-1)(x+20)=0`
⇒ `x=1/4 or - 20`
∴ `x=1/4` `[becausex>0]`
APPEARS IN
RELATED QUESTIONS
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`sin(sec^-1 17/8)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Solve the following equation for x:
tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
Evaluate the following:
`sin(2tan^-1 2/3)+cos(tan^-1sqrt3)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of sin (cot−1 x).
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If 4 cos−1 x + sin−1 x = π, then the value of x is
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
Find the domain of `sec^(-1)(3x-1)`.
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`