Advertisements
Advertisements
Question
Evaluate the following:
`cos^-1(cos3)`
Solution
We know
`cos^-1(costheta)=thetaif 0<=theta<=pi`
We have
`cos^-1(cos3)=3`
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin (13pi)/7)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Evaluate the following:
`cot^-1{cot (-(8pi)/3)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot{sec^-1(-13/5)}`
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If 4 cos−1 x + sin−1 x = π, then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The period of the function f(x) = tan3x is ____________.