English

Evaluate the Following: `Cot^-1{Cot -((8pi)/3)}` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`

Sum

Solution

We know that

cot-1 (cot θ) = θ,   (0, π)

We have

`cot^-1{cot  -((8pi)/3)}=cot^-1[-cot((8pi)/3)]`

`=cot^-1[-cot(3pi-pi/3)]`

`=cot^-1(cot  pi/3)`

`=pi/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 6.5 | Page 43

RELATED QUESTIONS

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×