English

Evaluate - Mathematics

Advertisements
Advertisements

Question

Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]

Solution

We know that 
\[\sin^{- 1} \left( \sin{x} \right) = x\]
We have
\[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \sin^{- 1} \left\{ \sin\left( \pi - \frac{3\pi}{5} \right) \right\} \left[ \because \left( \pi - \frac{3\pi}{5} \right) \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ = \sin^{- 1} \left( \sin\frac{2\pi}{5} \right)\]
\[ = \frac{2\pi}{5}\]
∴ \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \frac{2\pi}{5}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 32 | Page 118

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`5tan^-1x+3cot^-1x=2x`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


If tan−1 3 + tan−1 x = tan−1 8, then x =


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×