Advertisements
Advertisements
Question
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Solution
We know that
\[\sin^{- 1} \left( \sin{x} \right) = x\]
We have
\[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \sin^{- 1} \left\{ \sin\left( \pi - \frac{3\pi}{5} \right) \right\} \left[ \because \left( \pi - \frac{3\pi}{5} \right) \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ = \sin^{- 1} \left( \sin\frac{2\pi}{5} \right)\]
\[ = \frac{2\pi}{5}\]
∴ \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right) = \frac{2\pi}{5}\]
APPEARS IN
RELATED QUESTIONS
Write the value of `tan(2tan^(-1)(1/5))`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
If tan−1 3 + tan−1 x = tan−1 8, then x =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`