English

If Tan − 1 ( √ 1 + X 2 − √ 1 − X 2 √ 1 + X 2 + √ 1 − X 2 ) = α, Then X2 = (A) Sin 2 α (B) Sin α (C) Cos 2 α (D) Cos α - Mathematics

Advertisements
Advertisements

Question

If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =



Options

  • sin 2 α

  • sin α

  • cos 2 α

  • cos α

MCQ

Solution

(a) sin 2α
\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right) = \alpha\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} = \tan\alpha\]
\[\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \times \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} = \tan\alpha\]
\[ \Rightarrow \frac{\left( \sqrt{1 + x^2} \right)^2 + \left( \sqrt{1 - x^2} \right)^2 - 2\sqrt{1 + x^2}\sqrt{1 - x^2}}{\left( \sqrt{1 + x^2} \right)^2 - \left( \sqrt{1 - x^2} \right)^2} = \tan\alpha\]
\[ \Rightarrow \frac{1 - \sqrt{1 - x^4}}{x^2} = \tan\alpha\]
\[ \Rightarrow x^2 \tan\alpha = 1 - \sqrt{1 - x^4}\]
\[ \Rightarrow \sqrt{1 - x^4} = 1 - x^2 \tan\alpha\]
\[ \Rightarrow 1 - x^4 = 1 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha\]
\[ \Rightarrow x^4 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^4 \sec^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^2 \left( x^2 \sec^2 \alpha - 2\tan\alpha \right) = 0\]
\[ \Rightarrow x^2 \sec^2 \alpha - 2\tan\alpha = 0 \left[ \because x^2 \neq 0 \right]\]
\[ \Rightarrow x^2 \sec^2 \alpha = 2\tan\alpha\]
\[ \Rightarrow x^2 = \frac{2\tan\alpha}{\sec^2 \alpha} = 2\sin\alpha\cos\alpha = \sin2\alpha\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.16 [Page 119]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 1 | Page 119

RELATED QUESTIONS

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (13pi)/4)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`sec(sin^-1  12/13)`


Evaluate the following:

`cos(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`tan^-1  2/3=1/2tan^-1  12/5`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Write the value of sin1 (sin 1550°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


Find the domain of `sec^(-1)(3x-1)`.


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×