Advertisements
Advertisements
Question
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
Options
sin 2 α
sin α
cos 2 α
cos α
Solution
(a) sin 2α
\[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right) = \alpha\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} = \tan\alpha\]
\[\]
\[ \Rightarrow \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \times \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} = \tan\alpha\]
\[ \Rightarrow \frac{\left( \sqrt{1 + x^2} \right)^2 + \left( \sqrt{1 - x^2} \right)^2 - 2\sqrt{1 + x^2}\sqrt{1 - x^2}}{\left( \sqrt{1 + x^2} \right)^2 - \left( \sqrt{1 - x^2} \right)^2} = \tan\alpha\]
\[ \Rightarrow \frac{1 - \sqrt{1 - x^4}}{x^2} = \tan\alpha\]
\[ \Rightarrow x^2 \tan\alpha = 1 - \sqrt{1 - x^4}\]
\[ \Rightarrow \sqrt{1 - x^4} = 1 - x^2 \tan\alpha\]
\[ \Rightarrow 1 - x^4 = 1 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha\]
\[ \Rightarrow x^4 + x^4 \tan^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^4 \sec^2 \alpha - 2 x^2 \tan\alpha = 0\]
\[ \Rightarrow x^2 \left( x^2 \sec^2 \alpha - 2\tan\alpha \right) = 0\]
\[ \Rightarrow x^2 \sec^2 \alpha - 2\tan\alpha = 0 \left[ \because x^2 \neq 0 \right]\]
\[ \Rightarrow x^2 \sec^2 \alpha = 2\tan\alpha\]
\[ \Rightarrow x^2 = \frac{2\tan\alpha}{\sec^2 \alpha} = 2\sin\alpha\cos\alpha = \sin2\alpha\]
APPEARS IN
RELATED QUESTIONS
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
Find the domain of `f(x)=cos^-1x+cosx.`
Find the principal values of the following:
`cos^-1(tan (3pi)/4)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`sec(sin^-1 12/13)`
Evaluate the following:
`cos(tan^-1 24/7)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 2/3=1/2tan^-1 12/5`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`
Write the value of sin−1 (sin 1550°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`