English

Write the Principal Value of Tan − 1 √ 3 + Cot − 1 √ 3 - Mathematics

Advertisements
Advertisements

Question

Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`

Solution

We know
\[\tan^{- 1} x + \cot^{- 1} x = \frac{\pi}{2}\]
\[\therefore \tan^{- 1} \sqrt{3} + \cot^{- 1} \sqrt{3} = \frac{\pi}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.15 [Page 118]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.15 | Q 44 | Page 118

RELATED QUESTIONS

Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  pi/6)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`tan{cos^-1(-7/25)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


Evaluate:

`cot(tan^-1a+cot^-1a)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1x+2cot^-1x=(2x)/3`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of cos−1 (cos 1540°).


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]


If sin−1 − cos−1 x = `pi/6` , then x = 


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×