English

Evaluate: `Tan{Cos^-1(-7/25)}` - Mathematics

Advertisements
Advertisements

Question

Evaluate:

`tan{cos^-1(-7/25)}`

Solution

`tan{cos^-1(-7/25)}=tan{cos^-1(pi-7/25)}`

`=-tan{cos^-1(7/25)}`

`=-tan{tan^-1[sqrt(1-(7/25)^2)/(7/25)]}`

`=-tan{tan  24/7}`

`=-24/7`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.09 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.09 | Q 2.1 | Page 58

RELATED QUESTIONS

Write the value of `tan(2tan^(-1)(1/5))`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (5pi)/4}`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`sin(sec^-1  17/8)`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of tan1x + tan−1 `(1/x)`for x > 0.


Write the value of sin1 (sin 1550°).


Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


If 4 cos−1 x + sin−1 x = π, then the value of x is

 


If \[\cos^{- 1} x > \sin^{- 1} x\], then


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


tanx is periodic with period ____________.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×