Advertisements
Advertisements
Question
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
Options
2
3
1
none of these
Solution
(a) 2
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[\therefore \tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2x + 3x}{1 - 2x \times 3x} \right) = \frac{\pi}{4}\]
\[ \Rightarrow \frac{2x + 3x}{1 - 2x \times 3x} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \frac{5x}{1 - 6 x^2} = 1 \]
\[ \Rightarrow 5x = 1 - 6 x^2 \]
\[ \Rightarrow 6 x^2 + 5x - 1 = 0\]
Therefore, there are two solutions.
APPEARS IN
RELATED QUESTIONS
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of `f(x)=cos^-1x+cosx.`
`sin^-1(sin pi/6)`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin4)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cos(tan^-1 3/4)`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
`sin(sin^-1 1/5+cos^-1x)=1`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of cos \[\left( 2 \sin^{- 1} \frac{1}{2} \right)\]
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find the domain of `sec^(-1)(3x-1)`.
The period of the function f(x) = tan3x is ____________.