हिंदी

The Number of Solutions of the Equation Tan − 1 2 X + Tan − 1 3 X = π 4 is (A) 2 (B) 3 (C) 1 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 

विकल्प

  • 2

  • 3

  • 1

  • none of these

MCQ

उत्तर

(a) 2
We know that
\[\tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right)\]
\[\therefore \tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2x + 3x}{1 - 2x \times 3x} \right) = \frac{\pi}{4}\]
\[ \Rightarrow \frac{2x + 3x}{1 - 2x \times 3x} = \tan\frac{\pi}{4}\]
\[ \Rightarrow \frac{5x}{1 - 6 x^2} = 1 \]
\[ \Rightarrow 5x = 1 - 6 x^2 \]
\[ \Rightarrow 6 x^2 + 5x - 1 = 0\]

Therefore, there are two solutions.

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 8 | पृष्ठ १२०

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x :

`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin4)`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1(cos12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`cot^-1(cot  (4pi)/3)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


Evaluate:

`cot(tan^-1a+cot^-1a)`


`sin^-1x=pi/6+cos^-1x`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`sin^-1x+sin^-1  2x=pi/3`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos−1 (cos 6).


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×