हिंदी

Cot ( π 4 − 2 Cot − 1 3 ) = (A) 7 (B) 6 (C) 5 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 

विकल्प

  • 7

  • 6

  • 5

  • none of these

MCQ

उत्तर

(a) 7

Let  \[2 \cot^{- 1} 3 = y\]
Then,
\[\cot\frac{y}{2} = 3\]
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) = \cot\left( \frac{\pi}{4} - y \right)\]
\[ = \frac{\cot\frac{\pi}{4}\cot{y} + 1}{\cot{y} - \cot\frac{\pi}{4}}\]
\[ = \frac{\cot{y} + 1}{\cot{y} - 1} \]
\[ = \frac{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} + 1}{\frac{\cot^2 \frac{y}{2} - 1}{2\cot\frac{y}{2}} - 1}\]
\[ = \frac{\cot^2 \frac{y}{2} + 2\cot\frac{y}{2} - 1}{\cot^2 \frac{y}{2} - 2\cot\frac{y}{2} - 1}\]
\[ = \frac{9 + 6 - 1}{9 - 6 - 1}\]
\[ = 7\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 29 | पृष्ठ १२२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`sec^-1(sec  (5pi)/4)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Solve the following equation for x:

`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If \[\cos\left( \sin^{- 1} \frac{2}{5} + \cos^{- 1} x \right) = 0\], find the value of x.

 

2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×