Advertisements
Advertisements
प्रश्न
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
विकल्प
`1/sqrt3`
`-1/sqrt3`
`sqrt3`
`-sqrt3/4`
उत्तर
(a) `1/sqrt3`
Let `x=tany`
Then,
\[3 \sin^{- 1} \left( \frac{2\tan{y}}{1 + \tan^2 y} \right) - 4\left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) + 2 \tan^{- 1} \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) = \frac{\pi}{3}\]
\[ \Rightarrow 3 \sin^{- 1} \left( \sin 2y \right) - 4 \cos^{- 1} \left( \cos 2y \right) + 2 \tan^{- 1} \left( \tan2y \right) = \frac{\pi}{3} \]
\[ \left[ \because \sin2y = \left( \frac{2\tan{y}}{1 + \tan^2 y} \right), \cos2y = \left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) \text{ and }\tan2y = \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) \right]\]
\[ \Rightarrow 3 \times 2y - 4 \times 2y + 2 \times 2y = \frac{\pi}{3}\]
\[ \Rightarrow 6y - 8y + 4y = \frac{\pi}{3}\]
\[ \Rightarrow 2y = \frac{\pi}{3}\]
\[ \Rightarrow y = \frac{\pi}{6}\]
\[ \Rightarrow \tan^{- 1} x = \frac{\pi}{6} \left[ \because \tan^{- 1} x = y \right]\]
\[ \Rightarrow x = \tan\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{1}{\sqrt{3}}\]
APPEARS IN
संबंधित प्रश्न
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate the following:
`cos(tan^-1 24/7)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`4sin^-1x=pi-cos^-1x`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.