हिंदी

If 3 Sin − 1 ( 2 X 1 + X 2 ) − 4 Cos − 1 ( 1 − X 2 1 + X 2 ) + 2 Tan − 1 ( 2 X 1 − X 2 ) = π 3 is Equal to (A) 1 √ 3 (B) − 1 √ 3 (C) √ 3 (D) − √ 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 

विकल्प

  • `1/sqrt3`

  • `-1/sqrt3`

  • `sqrt3`

  • `-sqrt3/4`

MCQ

उत्तर

(a) `1/sqrt3`

Let `x=tany`
Then,
\[3 \sin^{- 1} \left( \frac{2\tan{y}}{1 + \tan^2 y} \right) - 4\left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) + 2 \tan^{- 1} \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) = \frac{\pi}{3}\]
\[ \Rightarrow 3 \sin^{- 1} \left( \sin 2y \right) - 4 \cos^{- 1} \left( \cos 2y \right) + 2 \tan^{- 1} \left( \tan2y \right) = \frac{\pi}{3} \]
\[ \left[ \because \sin2y = \left( \frac{2\tan{y}}{1 + \tan^2 y} \right), \cos2y = \left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) \text{ and }\tan2y = \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) \right]\]
\[ \Rightarrow 3 \times 2y - 4 \times 2y + 2 \times 2y = \frac{\pi}{3}\]
\[ \Rightarrow 6y - 8y + 4y = \frac{\pi}{3}\]
\[ \Rightarrow 2y = \frac{\pi}{3}\]
\[ \Rightarrow y = \frac{\pi}{6}\]
\[ \Rightarrow \tan^{- 1} x = \frac{\pi}{6} \left[ \because \tan^{- 1} x = y \right]\]
\[ \Rightarrow x = \tan\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{1}{\sqrt{3}}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 23 | पृष्ठ १२१

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan1)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cos(tan^-1  24/7)`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that:

`2sin^-1  3/5=tan^-1  24/7`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×