Advertisements
Advertisements
प्रश्न
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
उत्तर
Let x = cot θ
Now,
`tan^-1{sqrt(1+x^2)-x}=tan^-1{sqrt(1+cot^2theta)-cottheta}`
`=tan^-1{cosectheta-cottheta}`
`=tan^-1{(1-costheta)/sintheta}`
`=tan^-1{(2sin^2 theta/2)/(2sin theta/2cos theta/2)}`
`=tan^-1{tan(theta/2)}`
`=theta/2`
`=(cot^-1x)/2`
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin pi/6)`
`sin^-1(sin (7pi)/6)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`sin(cos^-1 5/13)`
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`tan^-1x+2cot^-1x=(2x)/3`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Write the value of cos−1 (cos 1540°).
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
The value of tan \[\left\{ \cos^{- 1} \frac{1}{5\sqrt{2}} - \sin^{- 1} \frac{4}{\sqrt{17}} \right\}\] is
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .
tanx is periodic with period ____________.