Advertisements
Advertisements
प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
उत्तर
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))`
`=cos^(-1){(1-(sqrt((a-b)/(a+b))tan(x/2))^2)/(1+(sqrt((a-b)/(a+b))tan(x/2))^2)} [∵ 2 tan^(-1) (x)=cos^(−1)((1−x^2)/(1+x^2))]`
`=cos^(-1) {(1-(a-b)/(a+b)tan^2(x/2))/(1+(a-b)/(a+b)tan^2(x/2))}`
`=cos^(-1){(a+b-(a-b)tan^2(x/2))/(a+b+(a-b)tan^2(x/2))}`
`=cos^(-1){(a+b-atan^2(x/2)+btan^(x/2))/(a+b+atan^2(x/2)-btan^(x/2))}`
`=cos^(-1) {(a(1-tan^2(x/2))+b(1+tan^2(x/2)))/(a(1+tan^2(x/2))+b(1-tan^2(x/2)))}`
`=cos^(-1) {(a((1-tan^2(x/2))/(1+tan^2(x/2)))+b((1+tan^2(x/2))/(1+tan^2(x/2))))/(a((1+tan^2(x/2))/(1+tan^2(x/2)))+b((1-tan^2(x/2))/(1+tan^2(x/2))))}`
`=cos^(-1){(a((1-tan^2(x/2))/(1+tan^2(x/2)))+b)/(a+b((1-tan^2(x/2))/(1+tan^2(x/2))))}`
`=cos^(-1){(acosx+b)/(a+bcosx)}`
APPEARS IN
संबंधित प्रश्न
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
`sin^-1(sin2)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
If `cos^-1 x/2+cos^-1 y/3=alpha,` then prove that `9x^2-12xy cosa+4y^2=36sin^2a.`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 2/3=1/2tan^-1 12/5`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .
The value of sin `["cos"^-1 (7/25)]` is ____________.
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.
Find the value of `sin^-1(cos((33π)/5))`.