हिंदी

Prove that : 2 tan^−1(√(a−b/a+b) tan(x2))=cos^−1(acosx+ba+bcosx) - Mathematics

Advertisements
Advertisements

प्रश्न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 
योग

उत्तर

 

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))`


`=cos^(-1){(1-(sqrt((a-b)/(a+b))tan(x/2))^2)/(1+(sqrt((a-b)/(a+b))tan(x/2))^2)} [∵ 2 tan^(-1) (x)=cos^(−1)((1−x^2)/(1+x^2))]`


`=cos^(-1) {(1-(a-b)/(a+b)tan^2(x/2))/(1+(a-b)/(a+b)tan^2(x/2))}`


`=cos^(-1){(a+b-(a-b)tan^2(x/2))/(a+b+(a-b)tan^2(x/2))}`


`=cos^(-1){(a+b-atan^2(x/2)+btan^(x/2))/(a+b+atan^2(x/2)-btan^(x/2))}`


`=cos^(-1) {(a(1-tan^2(x/2))+b(1+tan^2(x/2)))/(a(1+tan^2(x/2))+b(1-tan^2(x/2)))}`


`=cos^(-1) {(a((1-tan^2(x/2))/(1+tan^2(x/2)))+b((1+tan^2(x/2))/(1+tan^2(x/2))))/(a((1+tan^2(x/2))/(1+tan^2(x/2)))+b((1-tan^2(x/2))/(1+tan^2(x/2))))}`


`=cos^(-1){(a((1-tan^2(x/2))/(1+tan^2(x/2)))+b)/(a+b((1-tan^2(x/2))/(1+tan^2(x/2))))}`


`=cos^(-1){(acosx+b)/(a+bcosx)}`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2014-2015 (March) Patna Set 2

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


`sin^-1(sin2)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


Solve the following equation for x:

tan−1(x + 1) + tan−1(x − 1) = tan−1`8/31`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  2/3=1/2tan^-1  12/5`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


The value of sin `["cos"^-1 (7/25)]` is ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Find the value of `sin^-1(cos((33π)/5))`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×