हिंदी

`2sin^-1 3/5-tan^-1 17/31=Pi/4` - Mathematics

Advertisements
Advertisements

प्रश्न

`2sin^-1  3/5-tan^-1  17/31=pi/4`

उत्तर

LHS = `2sin^-1  3/5-tan^-1  17/31`

`=2tan^-1  (3/4)/sqrt(1-9/25)-tan^-1  17/31`      `[becausesin^-1x=tan^-1  x/sqrt(1-x^2)]`

`=2tan^-1  (3/5)/(4/5)-tan^-1  17/31`

`=2tan^-1  3/4-tan^-1  17/31`

`=tan^-1{(2xx3/4)/(1-(3/4)^2)}-tan^-1  17/31`    `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`

`=tan^-1{(3/2)/(7/16)}-tan^-1  17/31`

`=tan^-1  24/7-tan^-1  17/31`

`=tan^-1((24/7-17/31)/(1+24/7xx17/31))`      `[becausetan^-1x-tan^-1y=tan^-1((x+y)/(1+xy))]`

`=tan^-1((625/217)/(625/217))`

`=tan^-1 1=pi/4=`RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 2.06 | पृष्ठ ११५

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`cos^-1(cos4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`


Write the following in the simplest form:

`tan^-1sqrt((a-x)/(a+x)),-a<x<a`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate:

`cot(tan^-1a+cot^-1a)`


`sin^-1x=pi/6+cos^-1x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that

`sin{tan^-1  (1-x^2)/(2x)+cos^-1  (1-x^2)/(2x)}=1`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If sin−1 − cos−1 x = `pi/6` , then x = 


The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is

 


The value of \[\cos^{- 1} \left( \cos\frac{5\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{5\pi}{3} \right)\] is

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If tan−1 (cot θ) = 2 θ, then θ =

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×