Advertisements
Advertisements
प्रश्न
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
उत्तर
Let: a = tan z
b = tan y
Then,
`sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x`
`=>sin^-1 (2tanz)/(1+tan^2z)+sin^-1 (2tany)/(1+tan^2y)=2tan^-1x`
`=>sin^-1(sin2z)+sin^-1(sin2y)=2tan^-1x` `[becausesin2x=(2tanx)/(1+tan^2x)]`
`=>2z+2y=2tan^-1x`
`=>tan^-1a+tan^-1b=tan^-1x` `[becausea=tanzandb=tany]`
`=>tan^-1 (a+b)/(1-ab)=tan^-1x` `[becausetan^-1x+tan^-1y=tan^-1 (x+y)/(1-xy)]`
`=>x=(a+b)/(1-ab)`
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (19pi)/6)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`tan(cos^-1 4/5+tan^-1 2/3)=17/6`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Solve the following equation for x:
`tan^-1 1/4+2tan^-1 1/5+tan^-1 1/6+tan^-1 1/x=pi/4`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Write the value of sin (cot−1 x).
Write the value of sin−1 (sin 1550°).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
Find the domain of `sec^(-1)(3x-1)`.