हिंदी

Prove that `2tan^-1(Sqrt((A-b)/(A+B))Tan Theta/2)=Cos^-1((A Costheta+B)/(A+B Costheta))` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`

उत्तर

LHS = `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1{(1-(sqrt((a-b)/(a+b))tan  theta/2)^2)/(1+(sqrt((a-b)/(a+b))tan  theta/2)^2)}`     `[because2tan^-1(x)=cos^-1{(1-x^2)/(1+x^2)}]`

`=cos^-1{(1-(a-b)/(a+b)tan^2  theta/2)/(1+(a-b)/(a+b)tan^2  theta/2)}`

`=cos^-1{((a+b)-(a-b)tan^2  theta/2)/((a+b)+(a-b)tan^2  theta/2)}`

`=cos^-1{(a+b-atan^2  theta/2+btan^2  theta/2)/(a+b+atan^2  theta/2-btan^2  theta/2)}`

`=cos^-1{(a(1-tan^2  theta/2)+b(1+tan^2  theta/2))/(a(1+tan^2  theta/2)+b(1-tan^2  theta/2))}`

`=cos^-1{(a((1-tan^2  theta/2)/(1+tan^2  theta/2))+b((1+tan^2  theta/2)/(1+tan^2theta/2)))/(a((1+tan^2  theta/2)/(1+tan^2  theta/2))+b((1-tan^2  theta/2)/(1-tan^2  theta/2)))}`       `["Dividing"   N^r and D^r  by  1+tan^2  theta/2]` 

`=cos^-1{(a((1-tan^2  theta/2)/(1+tan^2  theta/2))+b)/(a+b((1-tan^2  theta/2)/(1-tan^2  theta/2)))}`

`=cos^-1{(acos  theta+b)/(a+bcostheta)}`=RHS

 

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 9 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


`sin^-1(sin12)`


Evaluate the following:

`cos^-1{cos  ((4pi)/3)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (9pi)/4)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`cosec^-1(cosec  (11pi)/6)`


Evaluate the following:

`cosec^-1(cosec  (13pi)/6)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cot(tan^-1a+cot^-1a)`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of cos−1 (cos 1540°).


Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×