Advertisements
Advertisements
प्रश्न
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
उत्तर
LHS = `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1{(1-(sqrt((a-b)/(a+b))tan theta/2)^2)/(1+(sqrt((a-b)/(a+b))tan theta/2)^2)}` `[because2tan^-1(x)=cos^-1{(1-x^2)/(1+x^2)}]`
`=cos^-1{(1-(a-b)/(a+b)tan^2 theta/2)/(1+(a-b)/(a+b)tan^2 theta/2)}`
`=cos^-1{((a+b)-(a-b)tan^2 theta/2)/((a+b)+(a-b)tan^2 theta/2)}`
`=cos^-1{(a+b-atan^2 theta/2+btan^2 theta/2)/(a+b+atan^2 theta/2-btan^2 theta/2)}`
`=cos^-1{(a(1-tan^2 theta/2)+b(1+tan^2 theta/2))/(a(1+tan^2 theta/2)+b(1-tan^2 theta/2))}`
`=cos^-1{(a((1-tan^2 theta/2)/(1+tan^2 theta/2))+b((1+tan^2 theta/2)/(1+tan^2theta/2)))/(a((1+tan^2 theta/2)/(1+tan^2 theta/2))+b((1-tan^2 theta/2)/(1-tan^2 theta/2)))}` `["Dividing" N^r and D^r by 1+tan^2 theta/2]`
`=cos^-1{(a((1-tan^2 theta/2)/(1+tan^2 theta/2))+b)/(a+b((1-tan^2 theta/2)/(1-tan^2 theta/2)))}`
`=cos^-1{(acos theta+b)/(a+bcostheta)}`=RHS
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
`sin^-1(sin12)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`tan^-1(tan pi/3)`
Evaluate the following:
`tan^-1(tan (9pi)/4)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`cot(cos^-1 3/5)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cot(tan^-1a+cot^-1a)`
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of cos−1 (cos 1540°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
The value of sin `["cos"^-1 (7/25)]` is ____________.