हिंदी

Evaluate the Following: `Cosec(Cos^-1 3/5)` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`cosec(cos^-1  3/5)`

उत्तर

`cosec(cos^-1  3/5)=cosec[sin^-1sqrt(1-(3/5)^2)]`    `[thereforecos^-1x=sin^-1sqrt(1-x^2)]`

`=cosec[sin^-1(sqrt(1-9/25))]`

`=cosec[sin^-1(sqrt(16/25))]`

`=cosec[sin^-1  4/5]`

`=cosec[cosec^-1  5/4]`

`=5/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.08 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 1.5 | पृष्ठ ५४

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve the equation for x:sin1x+sin1(1x)=cos1x


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Find the domain of `f(x)=cos^-1x+cosx.`


​Find the principal values of the following:

`cos^-1(tan  (3pi)/4)`


`sin^-1(sin12)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`sec{cot^-1(-5/12)}`


`sin(sin^-1  1/5+cos^-1x)=1`


`tan^-1x+2cot^-1x=(2x)/3`


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`sin^-1  4/5+2tan^-1  1/3=pi/2`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Prove that `2tan^-1(sqrt((a-b)/(a+b))tan  theta/2)=cos^-1((a costheta+b)/(a+b costheta))`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value of tan1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]


Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of `sin^-1(-1/2)`


Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×