मराठी

Evaluate the Following: Cosec(Cos-135) - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

cosec(cos-1 35)

उत्तर

cosec(cos-1 35)=cosec[sin-11-(35)2]    [cos-1x=sin-11-x2]

=cosec[sin-1(1-925)]

=cosec[sin-1(1625)]

=cosec[sin-1 45]

=cosec[cosec-1 54]

=54

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.08 [पृष्ठ ५४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 1.5 | पृष्ठ ५४

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the following for x :

tan-1(x-2x-3)+tan-1(x+2x+3)=π4,|x|<1


Solve for x:

2tan-1(cosx)=tan-1(2cosecx)


Solve the following for x:

sin-1(1-x)-2sin-1x=π2


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Prove that

tan-1[1+x-1-x1+x+1-x]=π4-12cos-1x,-12x1


sin-1(sin12)


Evaluate the following:

tan-1(tan 7π6)


Evaluate: sin{cos-1(-35)+cot-1(-512)}


Evaluate:

sin(tan-1x+tan-1 1x) for x > 0


Prove the following result:

tan-1 14+tan-1 29=sin-1 15


Prove that: cos-1 45+cos-1 1213=cos-1 3365


tan-1 14+tan-1 29=12cos-1 32=12sin-1(45)


Find the value of the following:

cos(sec-1x+cosec-1x), | x | ≥ 1


Solve the following equation for x:

tan-1 14+2tan-1 15+tan-1 16+tan-1 1x=π4


Solve the following equation for x:

cos-1(x2-1x2+1)+12tan-1(2x1-x2)=2x3


Prove that:

tan-1 2aba2-b2+tan-1 2xyx2-y2=tan-1 2αβα2-β2,   where α=ax-by and β=ay+bx.


Write the value of tan1x + tan−1 (1x)for x > 0.


Write the value of

cos1(12)+2sin1(12).


Write the value of cos(2sin113)


Write the value of cos−1 (tan3π4)


Write the value of cos (2sin112)


If tan−1 x + tan−1 y = π4,  then write the value of x + y + xy.


Write the value ofWrite the value of 2sin112+cos1(12)


Write the principal value of tan-13+cot-13


Write the value of cos1(cos14π3)


Wnte the value ofcos(tan1x+cot1x3), when x=13


If tan1(1+x21x21+x2+1x2)  = α, then x2 =




The number of solutions of the equation tan12x+tan13x=π4 is

 


If α = tan1(3x2yx),β=tan1(2xy3y), 
 then α − β =


Let f (x) = ecos-1{sin(x+π3}.
Then, f (8π/9) = 


The value of sin1(cos33π5) is 

 


It tan1x+1x1+tan1x1x=tan1   (−7), then the value of x is

 


If cos1x>sin1x, then


cot(π42cot13)= 

 


If sin1(2a1a2)+cos1(1a21+a2)=tan1(2x1x2), where a,x(0,1) , then, the value of x is

 


If > 1, then 2tan1x+sin1(2x1+x2) is equal to

 


If y = sin (sin x), prove that d2ydx2+tanxdydx+ycos2x=0.


If tan1(11+1.2)+tan1(11+2.3)+...+tan1(11+n.(n+1))=tan1θ , then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.