Advertisements
Advertisements
प्रश्न
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
उत्तर
`sin{cos^-1(-3/5)+cot^-1(-5/12)}=sin{pi-cos^-1(3/5)+pi-cot^-1(5/12)}`
`=sin{2pi-[cos^-1(3/5)+cot^-1(5/12)]}`
`=-sin{cos^-1(3/5)+cot^-1(5/12)}`
`=-sin{sin^-1[sqrt(1-(3/5)^2)]+sin^-1[(12/5)/sqrt(1+(12/5)^2)]}`
`=-sin(sin^-1 4/5+sin^-1 12/13)`
`=-sin{sin^-1[4/5xxsqrt(1-(12/13)^2)=12/13xxsqrt(1-(4/5)^2)]}`
`=-sin[sin^-1(20/65+36/65)]`
`=-sin[sin^-1(56/65)]`
`=-56/65`
APPEARS IN
संबंधित प्रश्न
If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin pi/6)`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (13pi)/4)`
Evaluate the following:
`cosec^-1(cosec (11pi)/6)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate:
`sec{cot^-1(-5/12)}`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`tan^-1x+2cot^-1x=(2x)/3`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
tan−1(x + 2) + tan−1(x − 2) = tan−1 `(8/79)`, x > 0
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of cos−1 (cos 1540°).
Write the value of cos−1 (cos 350°) − sin−1 (sin 350°)
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If 4 cos−1 x + sin−1 x = π, then the value of x is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find the domain of `sec^(-1)(3x-1)`.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
The period of the function f(x) = tan3x is ____________.