Advertisements
Advertisements
प्रश्न
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
उत्तर
For `cos^-1 (x^2 - 4)` to be defined
`-1 ≤ x^2 - 4 ≤ 1`
⇒ `3 ≤ x^2 ≤ 5`
⇒ `x in [- sqrt5, - sqrt3 ] cup [sqrt3, sqrt5 ] `
Hence, the domain of `f(x) is [-sqrt5, -sqrt3] cup [sqrt3, sqrt5]`.
APPEARS IN
संबंधित प्रश्न
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate:
`cos{sin^-1(-7/25)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
Evaluate:
`cot(tan^-1a+cot^-1a)`
`sin^-1x=pi/6+cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Prove the following result:
`sin^-1 12/13+cos^-1 4/5+tan^-1 63/16=pi`
`4tan^-1 1/5-tan^-1 1/239=pi/4`
Prove that
`sin{tan^-1 (1-x^2)/(2x)+cos^-1 (1-x^2)/(2x)}=1`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\] = α, then x2 =
If \[\cos^{- 1} x > \sin^{- 1} x\], then
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`