मराठी

Find the Value of X, If Tan Sec − 1 ( 1 X ) = Sin ( Tan − 1 2 ) , X > 0 . - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.

बेरीज

उत्तर

Let sec-1 `(1/x) = theta`

` ⇒ sec theta = 1/x`

⇒ cos θ = x 

⇒ tan ` (sec^(-1) (1/x)) = tan theta = sqrt(1 -x^2 ) /x `                ...(1) 

Now consider, 

sin ( tan -1 2 )

Let tan-1 2 = Φ

 tan Φ = 2 

sin ( tan-1 2) = sin Φ = `2/sqrt(5) `            ...(ii) 

From (i) and (ii)

`sqrt(1- x^2 )/x = 2/sqrt(5)`

5(1 - x) = 4x

`x = +- sqrt(5)/3 " but " x > 0 ⇒ x = sqrt(5)/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2018-2019 (March) 65/3/3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

 

Prove that :

`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`

 

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (17pi)/8)`


`sin^-1(sin4)`


`sin^-1(sin12)`


Evaluate the following:

`sec^-1(sec  pi/3)`


Evaluate the following:

`sec^-1(sec  (25pi)/6)`


Evaluate:

`sec{cot^-1(-5/12)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`4sin^-1x=pi-cos^-1x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Solve the following equation for x:

`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.


Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]


If \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} - \sqrt{1 - x^2}}{\sqrt{1 + x^2} + \sqrt{1 - x^2}} \right)\]  = α, then x2 =




The number of real solutions of the equation \[\sqrt{1 + \cos 2x} = \sqrt{2} \sin^{- 1} (\sin x), - \pi \leq x \leq \pi\]


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


If tan−1 (cot θ) = 2 θ, then θ =

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


The value of tan `("cos"^-1  4/5 + "tan"^-1  2/3) =`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×