मराठी

If sin [cot−1 (x+1)] = cos(tan−1x), then find x. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.

उत्तर

If sin [cot−1 (x+1)] = cos(tan1x), then find x.

`=>sin{sin^(-1) (1/(sqrt(1+(1+x)^2)))}`

`=cos{cos^(-1)(1/sqrt(1+x^2))}  [because cot^(-1)=sin^(-1)1/sqrt(1+x^2) and tan^(-1)x=cos^(-1)(1/sqrt(1+x^2))]`

`⇒1/sqrt(1+(x+1)^2)=1/sqrt(1+x^2)`

`⇒1/sqrt(2+x^2+2x)=1/sqrt(1+x^2)`

`⇒sqrt(1+x2)=sqrt(x^2+2x+2)`

Squaring both sides, we get

1+x2=x2+2x+2

2x+2=1

x=1/2

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Delhi Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (5pi)/6)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`tan^-1(tan2)`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`cosec(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


Evaluate:

`cot{sec^-1(-13/5)}`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`tan^-1  2/3=1/2tan^-1  12/5`


If `sin^-1  (2a)/(1+a^2)+sin^-1  (2b)/(1+b^2)=2tan^-1x,` Prove that  `x=(a+b)/(1-ab).`


Solve the following equation for x:

`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\]  then 9x2 − 12xy cos θ + 4y2 is equal to


If tan−1 (cot θ) = 2 θ, then θ =

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= `51/50`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×