Advertisements
Advertisements
प्रश्न
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
उत्तर
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
`=>sin{sin^(-1) (1/(sqrt(1+(1+x)^2)))}`
`=cos{cos^(-1)(1/sqrt(1+x^2))} [because cot^(-1)=sin^(-1)1/sqrt(1+x^2) and tan^(-1)x=cos^(-1)(1/sqrt(1+x^2))]`
`⇒1/sqrt(1+(x+1)^2)=1/sqrt(1+x^2)`
`⇒1/sqrt(2+x^2+2x)=1/sqrt(1+x^2)`
`⇒sqrt(1+x2)=sqrt(x^2+2x+2)`
Squaring both sides, we get
⇒1+x2=x2+2x+2
⇒2x+2=1
⇒x=−1/2
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`tan^-1 2/3=1/2tan^-1 12/5`
If `sin^-1 (2a)/(1+a^2)+sin^-1 (2b)/(1+b^2)=2tan^-1x,` Prove that `x=(a+b)/(1-ab).`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
If \[\cos^{- 1} \frac{x}{2} + \cos^{- 1} \frac{y}{3} = \theta,\] then 9x2 − 12xy cos θ + 4y2 is equal to
If tan−1 (cot θ) = 2 θ, then θ =
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`