Advertisements
Advertisements
प्रश्न
Evaluate the following:
`tan^-1(tan (7pi)/6)`
उत्तर
We know that
`tan^-1(tantheta)=theta, -pi/2<theta<pi/2`
We have
`tan^-1(tan (7pi)/6)=tan^-1[tan(pi+pi/6)]`
`=tan^-1[tan(pi/6)]`
`=pi/6`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
`sin^-1(sin pi/6)`
`sin^-1(sin (5pi)/6)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`cot^-1 a/sqrt(x^2-a^2),| x | > a`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`cosec(cos^-1 3/5)`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
`tan^-1x+2cot^-1x=(2x)/3`
`5tan^-1x+3cot^-1x=2x`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`sin^-1 5/13+cos^-1 3/5=tan^-1 63/16`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,` then write the value of x + y + z.
If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Write the range of tan−1 x.
Write the value of sin−1 (sin 1550°).
Evaluate sin \[\left( \tan^{- 1} \frac{3}{4} \right)\]
Write the value of cos−1 (cos 6).
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
If \[\cos^{- 1} x > \sin^{- 1} x\], then
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Find the value of `sin^-1(cos((33π)/5))`.