मराठी

If 3 Sin − 1 ( 2 X 1 + X 2 ) − 4 Cos − 1 ( 1 − X 2 1 + X 2 ) + 2 Tan − 1 ( 2 X 1 − X 2 ) = π 3 is Equal to (A) 1 √ 3 (B) − 1 √ 3 (C) √ 3 (D) − √ 3 4 - Mathematics

Advertisements
Advertisements

प्रश्न

If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to

 

पर्याय

  • `1/sqrt3`

  • `-1/sqrt3`

  • `sqrt3`

  • `-sqrt3/4`

MCQ

उत्तर

(a) `1/sqrt3`

Let `x=tany`
Then,
\[3 \sin^{- 1} \left( \frac{2\tan{y}}{1 + \tan^2 y} \right) - 4\left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) + 2 \tan^{- 1} \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) = \frac{\pi}{3}\]
\[ \Rightarrow 3 \sin^{- 1} \left( \sin 2y \right) - 4 \cos^{- 1} \left( \cos 2y \right) + 2 \tan^{- 1} \left( \tan2y \right) = \frac{\pi}{3} \]
\[ \left[ \because \sin2y = \left( \frac{2\tan{y}}{1 + \tan^2 y} \right), \cos2y = \left( \frac{1 - \tan^2 y}{1 + \tan^2 y} \right) \text{ and }\tan2y = \left( \frac{2\tan{y}}{1 - \tan^2 y} \right) \right]\]
\[ \Rightarrow 3 \times 2y - 4 \times 2y + 2 \times 2y = \frac{\pi}{3}\]
\[ \Rightarrow 6y - 8y + 4y = \frac{\pi}{3}\]
\[ \Rightarrow 2y = \frac{\pi}{3}\]
\[ \Rightarrow y = \frac{\pi}{6}\]
\[ \Rightarrow \tan^{- 1} x = \frac{\pi}{6} \left[ \because \tan^{- 1} x = y \right]\]
\[ \Rightarrow x = \tan\frac{\pi}{6}\]
\[ \Rightarrow x = \frac{1}{\sqrt{3}}\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२१]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 23 | पृष्ठ १२१

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


Find the domain of `f(x)=cos^-1x+cosx.`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cot^-1(cot  (19pi)/6)`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Write the following in the simplest form:

`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin^-1x=pi/6+cos^-1x`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


`tan^-1  2/3=1/2tan^-1  12/5`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Evaluate sin

\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\]   (−7), then the value of x is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×