मराठी

Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}`Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}`Find the Value of the Following: `Tan^-1{2cos(2sin^-1 1/2)}` - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`

उत्तर

Let `sin^-1  1/2=y`

Then,

`siny=1/2`

`thereforetan^-1{2cos(2sin^-1  1/2)}=tan^-1{2cos2y}`

`=tan^-1(2(1-2sin^2y))`     `[becausecos2x=1-2sin^2x]`

`=tan^-1{2(1-2xx1/4)}`     `[becausesiny=1/2]`

`=tan^-1{2xx1/2}`

`=tan^-1 1`

`=pi/4`

 

`thereforetan^-1{2cos(2sin^-1  1/2)}=pi/4`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 7.1 | पृष्ठ ११६

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If sin [cot−1 (x+1)] = cos(tan1x), then find x.


 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin4)`


Evaluate the following:

`cos^-1(cos5)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`tan(cos^-1  8/17)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate:

`cos{sin^-1(-7/25)}`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`5tan^-1x+3cot^-1x=2x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

tan−1(x −1) + tan−1x tan−1(x + 1) = tan−13x


Sum the following series:

`tan^-1  1/3+tan^-1  2/9+tan^-1  4/33+...+tan^-1  (2^(n-1))/(1+2^(2n-1))`


Evaluate: `cos(sin^-1  3/5+sin^-1  5/13)`


`tan^-1  2/3=1/2tan^-1  12/5`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


If `sin^-1x+sin^-1y+sin^-1z=(3pi)/2,`  then write the value of x + y + z.


If x > 1, then write the value of sin−1 `((2x)/(1+x^2))` in terms of tan−1 x.


If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`


Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


If sin−1 − cos−1 x = `pi/6` , then x = 


If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.


Find the domain of `sec^(-1) x-tan^(-1)x`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×