Advertisements
Advertisements
प्रश्न
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
उत्तर
\[\text{We have}, \cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right) = \cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left\{ \sin\left( \pi - \frac{\pi}{3} \right) \right\} \left[ \because \left( \pi - \frac{2\pi}{3} \right) \in \left[ - \frac{\pi}{2}, \frac{\pi}{2} \right] \right]\]
\[ = \cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left\{ \sin\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{2\pi}{3} + \frac{\pi}{3}\]
\[ = \pi\]
∴ \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right) = \pi\]
APPEARS IN
संबंधित प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin4)`
`sin^-1(sin2)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`tan^-1(tan2)`
Evaluate the following:
`sec^-1(sec (25pi)/6)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`
Evaluate the following:
`cot(cos^-1 3/5)`
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`sin(sin^-1 1/5+cos^-1x)=1`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1 2x+tan^-1 3x = npi+(3pi)/4`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`cos^-1x+sin^-1 x/2=π/6`
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`
Write the value of
\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of `tan^-1sqrt3+cot^-1sqrt3`
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .