मराठी

Show that: 2 sin^-1 (3/5)-tan^-1 (17/31)=π/4 - Mathematics

Advertisements
Advertisements

प्रश्न

 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

उत्तर

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

L.H.S 

`=cos^-1 (1-2 xx9/25)-tan^-1(17/31)`

`=cos^-1 (7/25) - tan^-1 (17/31)`

`=tan^-1 (24/7)-tan^-1(17/31)`

`=tan^-1 ((24/7-17/31)/(1+42/7xx17/31))`

`=tan^-1((24xx31-17xx7)/(31xx7+24xx17))`

`=tan^-1 (625/625)`

`=tan^(-1) 1`

`=pi/4`

Hence Proved

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2014-2015 (March) Panchkula Set 1

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos{sin^-1(-7/25)}`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1  x/2+tan^-1  x/3=pi/4, 0<x<sqrt6`


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate the following:

`tan  1/2(cos^-1  sqrt5/3)`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of sin (cot−1 x).


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals

 


The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is 

 


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×