Advertisements
Advertisements
प्रश्न
Show that:
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
उत्तर
`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`
L.H.S
`=cos^-1 (1-2 xx9/25)-tan^-1(17/31)`
`=cos^-1 (7/25) - tan^-1 (17/31)`
`=tan^-1 (24/7)-tan^-1(17/31)`
`=tan^-1 ((24/7-17/31)/(1+42/7xx17/31))`
`=tan^-1((24xx31-17xx7)/(31xx7+24xx17))`
`=tan^-1 (625/625)`
`=tan^(-1) 1`
`=pi/4`
Hence Proved
APPEARS IN
संबंधित प्रश्न
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (7pi)/3)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`sin(tan^-1 24/7)`
Prove the following result
`sin(cos^-1 3/5+sin^-1 5/13)=63/65`
Evaluate:
`cos{sin^-1(-7/25)}`
Prove the following result:
`tan^-1 1/7+tan^-1 1/13=tan^-1 2/9`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
Evaluate the following:
`tan 1/2(cos^-1 sqrt5/3)`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
Find the value of the following:
`tan^-1{2cos(2sin^-1 1/2)}`
Solve the following equation for x:
`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of tan−1 x + tan−1 `(1/x)` for x < 0.
Write the value of sin (cot−1 x).
Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
The set of values of `\text(cosec)^-1(sqrt3/2)`
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
The value of \[\sin^{- 1} \left( \cos\frac{33\pi}{5} \right)\] is
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`