Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
उत्तर
⇒ `cot^-1(x)-cot^-1(x+2)=pi/12`
⇒ `tan^-1(1/x)+cot^-1(1/(x+2))=pi/12` `[because cot^-1x=tan^-1 1/x]`
⇒ `tan^-1((1/x-1/(x+2))/(1+1/(x(x+2))))=pi/12`
⇒ `tan^-1((2/(x(x+2)))/((x^2+2x+1)/(x(x+2))))=pi/12`
⇒ `tan^-1(2/(x^2+2x+1))=pi/12`
⇒ `(2/(x^2+2x+1))=tan pi/12`
⇒ `(2/(x^2+2x+1))=tan(pi/3-pi/4)`
⇒ `(2/(x^2+2x+1))=(tan pi/3-tan pi/4)/(1+tan pi/3xxtan pi/4`
⇒ `(2/(x^2+2x+1))=(sqrt3-1)/(sqrt3+1)`
⇒ `(2/(x^2+2x+1))=(sqrt3-1)/(sqrt3+1)xx(sqrt3+1)/(sqrt3+1)`
⇒ `(2/(x^2+2x+1))=2/(sqrt3+1)^2`
⇒ `1/(x+1)^2=1/(sqrt3+1)^2`
⇒ `x+1=sqrt3+1`
⇒ `x=sqrt3`
APPEARS IN
संबंधित प्रश्न
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
`sin^-1(sin (5pi)/6)`
`sin^-1(sin12)`
Evaluate the following:
`sec^-1(sec pi/3)`
Evaluate the following:
`sec^-1(sec (5pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Write the following in the simplest form:
`sin^-1{(sqrt(1+x)+sqrt(1-x))/2},0<x<1`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
`sin(sin^-1 1/5+cos^-1x)=1`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
`tan^-1((x-2)/(x-4))+tan^-1((x+2)/(x+4))=pi/4`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Solve the following equation for x:
`tan^-1((2x)/(1-x^2))+cot^-1((1-x^2)/(2x))=(2pi)/3,x>0`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
Wnte the value of\[\cos\left( \frac{\tan^{- 1} x + \cot^{- 1} x}{3} \right), \text{ when } x = - \frac{1}{\sqrt{3}}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\] is equal to
The number of solutions of the equation \[\tan^{- 1} 2x + \tan^{- 1} 3x = \frac{\pi}{4}\] is
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When \[\theta = \frac{\pi}{3}\] .
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .
Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}2 = `51/50`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.