मराठी

If α = Tan − 1 ( Tan 5 π 4 ) and β = Tan − 1 ( − Tan 2 π 3 ) , Then (A) 4 α = 3 β (B) 3 α = 4 β (C) α − β = 7 π 12 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

पर्याय

  • 4 α = 3 β

  • 3 α = 4 β

  • α − β = `(7pi)/12`

  • none of these

MCQ

उत्तर

(a) 4 α = 3 β
We know that 

\[\tan^{- 1} \left( \tan{x} \right) = x\]
\[\therefore \alpha = \tan^{- 1} \left( \tan\frac{5\pi}{4} \right)\]
\[ = \tan^{- 1} \left\{ \tan\left( \pi + \frac{\pi}{4} \right) \right\}\]
\[ = \tan^{- 1} \left( \tan\frac{\pi}{4} \right)\]
\[ = \frac{\pi}{4}\]
and
\[\beta = \tan^{- 1} \left\{ - \tan\left( \frac{2\pi}{3} \right) \right\}\]
\[ = \tan^{- 1} \left\{ - \tan\left( \pi - \frac{\pi}{3} \right) \right\}\]
\[ = \tan^{- 1} \left\{ \tan\left( \frac{\pi}{3} \right) \right\}\]
\[ = \frac{\pi}{3}\]
\[\therefore 4\alpha = \pi\]
\[3\beta = \pi\]
∴ \[4\alpha = 3\beta\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.16 [पृष्ठ १२०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.16 | Q 9 | पृष्ठ १२०

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


`sin^-1(sin  (7pi)/6)`


`sin^-1(sin  (5pi)/6)`


`sin^-1(sin  (13pi)/7)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`tan^-1(tan  pi/3)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(tan^-1  24/7)`


Evaluate the following:

`cosec(cos^-1  3/5)`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate:

`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1


If `cos^-1x + cos^-1y =pi/4,`  find the value of `sin^-1x+sin^-1y`


`sin(sin^-1  1/5+cos^-1x)=1`


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Solve the following:

`cos^-1x+sin^-1  x/2=π/6`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


If `sin^-1  (2a)/(1+a^2)-cos^-1  (1-b^2)/(1+b^2)=tan^-1  (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\]  is equal to

 

 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


If 2 tan−1 (cos θ) = tan−1 (2 cosec θ), (θ ≠ 0), then find the value of θ.


The value of sin `["cos"^-1 (7/25)]` is ____________.


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×