Advertisements
Advertisements
प्रश्न
`sin(sin^-1 1/5+cos^-1x)=1`
उत्तर
`sin(sin^-1 1/5+cos^-1x)=1`
⇒ `sin^-1 1/5+cos^-1x=sin^-1 1`
⇒ `sin^-1 1/5+cos^-1x=pi/2`
⇒ `sin^-1 1/5=pi/2-cos^-1x`
⇒ `sin^-1 1/5=sin^-1x` `[thereforesin^-1x=pi/2-cos^-1x]`
⇒ `x=1/5`
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If sin [cot−1 (x+1)] = cos(tan−1x), then find x.
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
Find the domain of definition of `f(x)=cos^-1(x^2-4)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
`sin^-1(sin pi/6)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`cosec^-1(cosec (13pi)/6)`
Evaluate the following:
`cot^-1(cot pi/3)`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Write the following in the simplest form:
`sin{2tan^-1sqrt((1-x)/(1+x))}`
Evaluate the following:
`tan(cos^-1 8/17)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate:
`sec{cot^-1(-5/12)}`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Evaluate:
`cot(tan^-1a+cot^-1a)`
If `cos^-1x + cos^-1y =pi/4,` find the value of `sin^-1x+sin^-1y`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`sin^-1x=pi/6+cos^-1x`
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
`tan^-1 1/7+2tan^-1 1/3=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Write the value of cos\[\left( 2 \sin^{- 1} \frac{1}{3} \right)\]
Write the value of \[\tan^{- 1} \left\{ 2\sin\left( 2 \cos^{- 1} \frac{\sqrt{3}}{2} \right) \right\}\]
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`
tanx is periodic with period ____________.