Advertisements
Advertisements
प्रश्न
`tan^-1 1/7+2tan^-1 1/3=pi/4`
उत्तर
LHS = `tan^-1 1/7+2tan^-1 1/3`
`=tan^-1 1/7+tan^-1{(2xx1/3)/(1-(1/3)^2)}` `[because2tan^-1x=tan^-1{(2x)/(1-x^2)}]`
`=tan^-1 1/7+tan^-1{(2/3)/(8/9)}`
`=tan^-1 1/7+tan^-1 3/4`
`=tan^-1((1/7+3/4)/(1-1/7xx3/4))` `[becausetan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))]`
`=tan^-1((25/28)/(25/28))`
`=tan^-1 1=pi/4=`RHS
APPEARS IN
संबंधित प्रश्न
Find the principal values of the following:
`cos^-1(sin (4pi)/3)`
Evaluate the following:
`cos^-1(cos3)`
Evaluate the following:
`cos^-1(cos5)`
Evaluate the following:
`tan^-1(tan (7pi)/6)`
Evaluate the following:
`tan^-1(tan1)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`\text(cosec)^-1(\text{cosec} pi/4)`
Evaluate the following:
`cot^-1(cot (9pi)/4)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1sqrt((a-x)/(a+x)),-a<x<a`
Write the following in the simplest form:
`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`
Evaluate:
`cos(tan^-1 3/4)`
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
`sin^-1 63/65=sin^-1 5/13+cos^-1 3/5`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Solve the following equation for x:
`3sin^-1 (2x)/(1+x^2)-4cos^-1 (1-x^2)/(1+x^2)+2tan^-1 (2x)/(1-x^2)=pi/3`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the value of tan−1\[\left\{ \tan\left( \frac{15\pi}{4} \right) \right\}\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
\[\tan^{- 1} \frac{1}{11} + \tan^{- 1} \frac{2}{11}\] is equal to
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Find the domain of `sec^(-1)(3x-1)`.
tanx is periodic with period ____________.