मराठी

Solve the Following Equation For X: `Tan^-1(2+X)+Tan^-1(2-x)=Tan^-1 2/3, Where X< -sqrt3 Or, X>Sqrt3` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`

उत्तर

We know

`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`

∴ `tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3`

⇒ `tan^-1((2+x+2-x)/(1-(2+x)xx(2-x)))=tan^-1  2/3`

⇒ `4/(1-4+x^2)=2/3`

⇒ `-6+2x^2=12`

⇒ `2x^2=18`

⇒ `x^2=9`

⇒ `x=+-3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.11 [पृष्ठ ८२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.11 | Q 3.09 | पृष्ठ ८२

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Solve the equation for x:sin1x+sin1(1x)=cos1x


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1{(sin - (17pi)/8)}`


Evaluate the following:

`tan^-1(tan12)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1{cosec  (-(9pi)/4)}`


Evaluate the following:

`cot^-1(cot  pi/3)`


Evaluate the following:

`cot^-1{cot  ((21pi)/4)}`


Write the following in the simplest form:

`tan^-1{sqrt(1+x^2)-x},x in R `


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Solve the following equation for x:

`tan^-1  (x-2)/(x-1)+tan^-1  (x+2)/(x+1)=pi/4`


`(9pi)/8-9/4sin^-1  1/3=9/4sin^-1  (2sqrt2)/3`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`sin(1/2cos^-1  4/5)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2sin^-1  3/5-tan^-1  17/31=pi/4`


`2tan^-1  1/5+tan^-1  1/8=tan^-1  4/7`


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.

 


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]


Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]


2 tan−1 {cosec (tan−1 x) − tan (cot1 x)} is equal to


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is

 


If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]


Find the domain of `sec^(-1) x-tan^(-1)x`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×