Advertisements
Advertisements
प्रश्न
Solve the following equation for x:
`tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3, where x< -sqrt3 or, x>sqrt3`
उत्तर
We know
`tan^-1x+tan^-1y=tan^-1((x+y)/(1-xy))`
∴ `tan^-1(2+x)+tan^-1(2-x)=tan^-1 2/3`
⇒ `tan^-1((2+x+2-x)/(1-(2+x)xx(2-x)))=tan^-1 2/3`
⇒ `4/(1-4+x^2)=2/3`
⇒ `-6+2x^2=12`
⇒ `2x^2=18`
⇒ `x^2=9`
⇒ `x=+-3`
APPEARS IN
संबंधित प्रश्न
Solve the equation for x:sin−1x+sin−1(1−x)=cos−1x
Find the principal values of the following:
`cos^-1(-sqrt3/2)`
Find the principal values of the following:
`cos^-1(-1/sqrt2)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`tan^-1(tan12)`
Evaluate the following:
`sec^-1(sec (2pi)/3)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{sqrt(1+x^2)-x},x in R `
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x > 0
If `cot(cos^-1 3/5+sin^-1x)=0`, find the values of x.
Solve the following equation for x:
`tan^-1 (x-2)/(x-1)+tan^-1 (x+2)/(x+1)=pi/4`
`(9pi)/8-9/4sin^-1 1/3=9/4sin^-1 (2sqrt2)/3`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
`2tan^-1 1/5+tan^-1 1/8=tan^-1 4/7`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
If \[\sin^{- 1} \left( \frac{1}{3} \right) + \cos^{- 1} x = \frac{\pi}{2},\] then find x.
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
The value of sin \[\left( \frac{1}{4} \sin^{- 1} \frac{\sqrt{63}}{8} \right)\] is
If y = sin (sin x), prove that \[\frac{d^2 y}{d x^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0 .\]
Find the domain of `sec^(-1) x-tan^(-1)x`
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.