Advertisements
Advertisements
प्रश्न
Find the domain of `sec^(-1) x-tan^(-1)x`
उत्तर
Domain of sec-1x is (-∞, -1] ⋃ [1, ∞)
Domain of tan-1x is R
Union of (1) and (2) will be domain of given function
(–∞,–1]⋃[1,∞) ⋃ R ⇒ (–∞,–1]⋃[1,∞)
∴ The domain of given function is (–∞,–1]⋃[1,∞).
APPEARS IN
संबंधित प्रश्न
If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin pi/6)`
`sin^-1(sin (13pi)/7)`
Evaluate the following:
`cos^-1{cos(-pi/4)}`
Evaluate the following:
`cos^-1{cos ((4pi)/3)}`
Evaluate the following:
`cos^-1(cos4)`
Evaluate the following:
`tan^-1(tan4)`
Evaluate the following:
`cot^-1(cot pi/3)`
Evaluate the following:
`cot^-1{cot ((21pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cosec(cos^-1 3/5)`
Solve: `cos(sin^-1x)=1/6`
Evaluate:
`cot{sec^-1(-13/5)}`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
Solve the following equation for x:
cot−1x − cot−1(x + 2) =`pi/12`, x > 0
Solve the following equation for x:
`tan^-1 x/2+tan^-1 x/3=pi/4, 0<x<sqrt6`
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 2/3=1/2tan^-1 12/5`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Solve the following equation for x:
`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`
If −1 < x < 0, then write the value of `sin^-1((2x)/(1+x^2))+cos^-1((1-x^2)/(1+x^2))`
Write the value of cos−1 (cos 1540°).
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
Write the principal value of `sin^-1(-1/2)`
Find the value of \[\cos^{- 1} \left( \cos\frac{13\pi}{6} \right)\]
If tan−1 3 + tan−1 x = tan−1 8, then x =
It \[\tan^{- 1} \frac{x + 1}{x - 1} + \tan^{- 1} \frac{x - 1}{x} = \tan^{- 1}\] (−7), then the value of x is
\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\]
If \[\sin^{- 1} \left( \frac{2a}{1 - a^2} \right) + \cos^{- 1} \left( \frac{1 - a^2}{1 + a^2} \right) = \tan^{- 1} \left( \frac{2x}{1 - x^2} \right),\text{ where }a, x \in \left( 0, 1 \right)\] , then, the value of x is
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
The value of tan `("cos"^-1 4/5 + "tan"^-1 2/3) =`