मराठी

Prove that : Tan − 1 ( √ 1 + X 2 + √ 1 − X 2 √ 1 + X 2 − √ 1 − X 2 ) = π 4 + 1 2 Cos − 1 X 2 ; 1 < X < 1 .Prove that : Tan − 1 ( √ 1 + X 2 + √ 1 − X 2 √ 1 + X 2 − √ 1 − X 2 ) = π 4 + 1 2 Cos − 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ;  1 < x < 1\].

उत्तर

Put \[x^2 = \cos2\theta\], we have 

\[\tan^{- 1} \left( \frac{\sqrt{1 + \cos2\theta} + \sqrt{1 - \cos2\theta}}{\sqrt{1 + \cos2\theta} - \sqrt{1 - \cos2\theta}} \right)\]

\[ = \tan^{- 1} \left( \frac{\sqrt{2c {os}^2 \theta} + \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}} \right)\]

\[ = \tan^{- 1} \left( \frac{cos\theta + \sin\theta}{cos\theta - \sin\theta} \right)\]

\[ = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]

\[= \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]

\[ = \frac{\pi}{4} + \theta \left[ \because - 1 < x < 1 \Rightarrow 0 < x^2 < 1 \Rightarrow 0 < 2\theta < \frac{\pi}{2} \Rightarrow 0 < \theta < \frac{\pi}{4} \right]\]

\[ = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 \left[ \because x^2 = \cos2\theta \Rightarrow 2\theta = \cos^{- 1} x^2 \right]\]

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2016-2017 (March) Foreign Set 3

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


Prove that

`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin3)`


Evaluate the following:

`tan^-1(tan  (6pi)/7)`


Evaluate the following:

`cosec^-1(cosec  (3pi)/4)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Write the following in the simplest form:

`tan^-1{x+sqrt(1+x^2)},x in R `


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`cosec{cot^-1(-12/5)}`


Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`


Prove the following result:

`tan^-1  1/4+tan^-1  2/9=sin^-1  1/sqrt5`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


Solve `cos^-1sqrt3x+cos^-1x=pi/2`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the range of tan−1 x.


Write the value of cos\[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Write the principal value of `sin^-1(-1/2)`


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


Write the value of  `cot^-1(-x)`  for all `x in R` in terms of `cot^-1(x)`


Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]


If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is

 


If > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×