Advertisements
Advertisements
प्रश्न
Prove that : \[\tan^{- 1} \left( \frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}} \right) = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 ; 1 < x < 1\].
उत्तर
Put \[x^2 = \cos2\theta\], we have
\[\tan^{- 1} \left( \frac{\sqrt{1 + \cos2\theta} + \sqrt{1 - \cos2\theta}}{\sqrt{1 + \cos2\theta} - \sqrt{1 - \cos2\theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{\sqrt{2c {os}^2 \theta} + \sqrt{2 \sin^2 \theta}}{\sqrt{2 \cos^2 \theta} - \sqrt{2 \sin^2 \theta}} \right)\]
\[ = \tan^{- 1} \left( \frac{cos\theta + \sin\theta}{cos\theta - \sin\theta} \right)\]
\[ = \tan^{- 1} \left( \frac{1 + \tan\theta}{1 - \tan\theta} \right)\]
\[= \tan^{- 1} \left[ \tan\left( \frac{\pi}{4} + \theta \right) \right]\]
\[ = \frac{\pi}{4} + \theta \left[ \because - 1 < x < 1 \Rightarrow 0 < x^2 < 1 \Rightarrow 0 < 2\theta < \frac{\pi}{2} \Rightarrow 0 < \theta < \frac{\pi}{4} \right]\]
\[ = \frac{\pi}{4} + \frac{1}{2} \cos^{- 1} x^2 \left[ \because x^2 = \cos2\theta \Rightarrow 2\theta = \cos^{- 1} x^2 \right]\]
Hence proved.
APPEARS IN
संबंधित प्रश्न
If (tan−1x)2 + (cot−1x)2 = 5π2/8, then find x.
Prove that
`tan^(-1) [(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2 cos^(-1)x,-1/sqrt2<=x<=1`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin3)`
Evaluate the following:
`tan^-1(tan (6pi)/7)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1(cosec (6pi)/5)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Prove the following result
`cos(sin^-1 3/5+cot^-1 3/2)=6/(5sqrt13)`
Evaluate:
`cosec{cot^-1(-12/5)}`
Evaluate: `sin{cos^-1(-3/5)+cot^-1(-5/12)}`
Prove the following result:
`tan^-1 1/4+tan^-1 2/9=sin^-1 1/sqrt5`
Solve the following equation for x:
tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0
Solve `cos^-1sqrt3x+cos^-1x=pi/2`
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
Write the range of tan−1 x.
Write the value of cos2 \[\left( \frac{1}{2} \cos^{- 1} \frac{3}{5} \right)\]
Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]
Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]
Evaluate: \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\cos^{- 1} \left( \cos680^\circ \right)\]
Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]
Write the value of `cot^-1(-x)` for all `x in R` in terms of `cot^-1(x)`
Find the value of \[2 \sec^{- 1} 2 + \sin^{- 1} \left( \frac{1}{2} \right)\]
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
If x > 1, then \[2 \tan^{- 1} x + \sin^{- 1} \left( \frac{2x}{1 + x^2} \right)\] is equal to
Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .