Advertisements
Advertisements
प्रश्न
Find the general solution of the differential equation \[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos\left( \frac{y}{x} \right) + x .\]
उत्तर
\[x \cos \left( \frac{y}{x} \right)\frac{dy}{dx} = y \cos \left( \frac{y}{x} \right) + x\]
\[ \Rightarrow \frac{dy}{dx} = \frac{y \cos \left( \frac{y}{x} \right) + x}{x \cos \left( \frac{y}{x} \right)}\]
\[\text { This is a homogeneous differential equation } . \]
\[\text { Putting }y = vx and \frac{dy}{dx} = v + x\frac{dv}{dx}, \text { we get }\]
\[v + x\frac{dv}{dx} = \frac{vx \cos v + x}{x \cos v}\]
\[\Rightarrow v + x\frac{dv}{dx} = \frac{v \cos v + 1}{\cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{v \cos v + 1 - v \cos v}{\cos v}\]
\[ \Rightarrow x\frac{dv}{dx} = \frac{1}{\cos v}\]
\[ \Rightarrow \cos v dv = \frac{1}{x}dx\]
\[\text { Integrating both sides, we get }\]
\[\int\cos v \ dv = \int\frac{1}{x}dx\]
\[ \Rightarrow \sin v = \log \left| x \right| + \log\left| C \right|\]
\[\text { Putting v }= \frac{y}{x}, we get\]
\[\sin\frac{y}{x} = \log \left| Cx \right|\]
\[\text { which is the general solution of the given differential equation } .\]
APPEARS IN
संबंधित प्रश्न
The differential equation of the family of curves y=c1ex+c2e-x is......
(a)`(d^2y)/dx^2+y=0`
(b)`(d^2y)/dx^2-y=0`
(c)`(d^2y)/dx^2+1=0`
(d)`(d^2y)/dx^2-1=0`
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation x (1 + y2) dx – y (1 + x2) dy = 0, given that y = 1 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = ex + 1 : y″ – y′ = 0
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
y = x sin x : xy' = `y + x sqrt (x^2 - y^2)` (x ≠ 0 and x > y or x < -y)
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
The general solution of the differential equation \[\frac{dy}{dx} + y \] cot x = cosec x, is
The solution of the differential equation \[\frac{dy}{dx} + \frac{2y}{x} = 0\] with y(1) = 1 is given by
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
The solution of the differential equation \[\frac{dy}{dx} - ky = 0, y\left( 0 \right) = 1\] approaches to zero when x → ∞, if
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
(x3 − 2y3) dx + 3x2 y dy = 0
`x cos x(dy)/(dx)+y(x sin x + cos x)=1`
\[y^2 + \left( x + \frac{1}{y} \right)\frac{dy}{dx} = 0\]
Find the general solution of the differential equation \[\frac{dy}{dx} = \frac{x + 1}{2 - y}, y \neq 2\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The general solution of the differential equation x(1 + y2)dx + y(1 + x2)dy = 0 is (1 + x2)(1 + y2) = k.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Find the general solution of `(x + 2y^3) "dy"/"dx"` = y
If y(x) is a solution of `((2 + sinx)/(1 + y))"dy"/"dx"` = – cosx and y (0) = 1, then find the value of `y(pi/2)`.
If y(t) is a solution of `(1 + "t")"dy"/"dt" - "t"y` = 1 and y(0) = – 1, then show that y(1) = `-1/2`.
Find the general solution of the differential equation `(1 + y^2) + (x - "e"^(tan - 1y)) "dy"/"dx"` = 0.
Solution of differential equation xdy – ydx = 0 represents : ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
Find the particular solution of the following differential equation, given that y = 0 when x = `pi/4`.
`(dy)/(dx) + ycotx = 2/(1 + sinx)`
Find a particular solution satisfying the given condition `- cos((dy)/(dx)) = a, (a ∈ R), y` = 1 when `x` = 0