Advertisements
Advertisements
प्रश्न
The general solution of the differential equation \[\frac{dy}{dx} + y\] g' (x) = g (x) g' (x), where g (x) is a given function of x, is
पर्याय
g (x) + log {1 + y + g (x)} = C
g (x) + log {1 + y − g (x)} = C
g (x) − log {1 + y − g (x)} = C
none of these
उत्तर
g (x) + log {1 + y − g (x)} = C
We have,
\[\frac{dy}{dx} + y g'\left( x \right) = g\left( x \right)g'\left( x \right) . . . . . \left( 1 \right)\]
Clearly, it is a linear differential equation of the form
\[\frac{dy}{dx} + Py = Q\]
\[\text{ where }P = g'\left( x \right)\text{ and }Q = g\left( x \right)g'\left( x \right) . \]
\[ \therefore I . F . = e^{\int P\ dx} \]
\[ = e^{\int g'\left( x \right) dx} \]
\[ = e^{g\left( x \right)} \]
Multiplying both sides of (1) by I.F. , we get
\[ e^{g\left( x \right)} \left( \frac{dy}{dx} + yg'\left( x \right) \right) = e^{g\left( x \right)} g\left( x \right)g'\left( x \right)\]
\[ \Rightarrow e^{g\left( x \right)} \frac{dy}{dx} + e^{g\left( x \right)} y g'\left( x \right) = e^{g\left( x \right)} g\left( x \right)g'\left( x \right)\]
Integrating both sides with respect to x, we get
\[y e^{g\left( x \right)} = \int e^{g\left( x \right)} g\left( x \right)g'\left( x \right) dx + K\]
\[ \Rightarrow y e^{g\left( x \right)} = I + K\]
\[ \text{ where }I = \int e^{g\left( x \right)} g\left( x \right)g'\left( x \right) dx\]
Now,
\[I = \int e^{g\left( x \right)} g\left( x \right)g'\left( x \right) dx\]
\[\text{Putting }g\left( x \right) = t, \text{ we get }\]
\[g'\left( x \right) dx = dt\]
\[ = t\int e^t dt - \int\left[ \frac{d}{dx}\left( t \right)\int e^t dt \right]dt\]
\[ = t e^t - e^t \]
\[ = g\left( x \right) e^{g\left( x \right)} - e^{g\left( x \right)} \]
\[ \therefore y e^{g\left( x \right)} = g\left( x \right) e^{g\left( x \right)} - e^{g\left( x \right)} + K\]
\[ \Rightarrow y e^{g\left( x \right)} + e^{g\left( x \right)} - g\left( x \right) e^{g\left( x \right)} = K\]
\[ \Rightarrow y + 1 - g\left( x \right) = K e^{- g\left( x \right)} \]
Taking log on both sides, we get
\[\log\left\{ y + 1 - g\left( x \right) \right\} = - g\left( x \right) + \log K\]
\[ \Rightarrow g\left( x \right) + \log\left\{ 1 + y - g\left( x \right) \right\} = C ...........\left(\text{Where, }C = \log K \right)\]
APPEARS IN
संबंधित प्रश्न
Find the differential equation representing the curve y = cx + c2.
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation
(1 – y2) (1 + log x) dx + 2xy dy = 0, given that y = 0 when x = 1.
Find the particular solution of the differential equation `dy/dx=(xy)/(x^2+y^2)` given that y = 1, when x = 0.
Find the particular solution of the differential equation log(dy/dx)= 3x + 4y, given that y = 0 when x = 0.
Verify that the given function (explicit or implicit) is a solution of the corresponding differential equation:
`y = sqrt(a^2 - x^2 ) x in (-a,a) : x + y dy/dx = 0(y != 0)`
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
The number of arbitrary constants in the particular solution of a differential equation of third order are ______.
If y = etan x+ (log x)tan x then find dy/dx
Solve the differential equation `cos^2 x dy/dx` + y = tan x
How many arbitrary constants are there in the general solution of the differential equation of order 3.
The solution of the differential equation \[\frac{dy}{dx} = 1 + x + y^2 + x y^2 , y\left( 0 \right) = 0\] is
Solution of the differential equation \[\frac{dy}{dx} + \frac{y}{x}=\sin x\] is
The solution of the differential equation \[\left( 1 + x^2 \right)\frac{dy}{dx} + 1 + y^2 = 0\], is
The general solution of the differential equation \[\frac{dy}{dx} = e^{x + y}\], is
Solve the differential equation (x2 − yx2) dy + (y2 + x2y2) dx = 0, given that y = 1, when x = 1.
The solution of the differential equation \[\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left( \frac{y}{x} \right)}{\phi'\left( \frac{y}{x} \right)}\] is
\[\frac{dy}{dx} = \frac{\sin x + x \cos x}{y\left( 2 \log y + 1 \right)}\]
\[\frac{dy}{dx} + \frac{y}{x} = \frac{y^2}{x^2}\]
(x2 + 1) dy + (2y − 1) dx = 0
`2 cos x(dy)/(dx)+4y sin x = sin 2x," given that "y = 0" when "x = pi/3.`
For the following differential equation, find the general solution:- \[\frac{dy}{dx} = \left( 1 + x^2 \right)\left( 1 + y^2 \right)\]
For the following differential equation, find the general solution:- \[\frac{dy}{dx} + y = 1\]
Solve the following differential equation:-
\[\frac{dy}{dx} + \left( \sec x \right) y = \tan x\]
Solve the following differential equation:-
\[x \log x\frac{dy}{dx} + y = \frac{2}{x}\log x\]
Solve the following differential equation:-
\[\left( x + y \right)\frac{dy}{dx} = 1\]
Find the equation of the curve passing through the point (1, 1) whose differential equation is x dy = (2x2 + 1) dx, x ≠ 0.
Solve the differential equation: ` ("x" + 1) (d"y")/(d"x") = 2e^-"y" - 1; y(0) = 0.`
Find the differential equation of all non-horizontal lines in a plane.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Integrating factor of the differential equation `("d"y)/("d"x) + y tanx - secx` = 0 is ______.
The solution of the differential equation cosx siny dx + sinx cosy dy = 0 is ______.
The solution of `("d"y)/("d"x) + y = "e"^-x`, y(0) = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation ydx + (x + xy)dy = 0 is ______.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.
The differential equation of all parabolas that have origin as vertex and y-axis as axis of symmetry is ______.