Advertisements
Advertisements
प्रश्न
(x2 + 1) dy + (2y − 1) dx = 0
उत्तर
We have,
\[\left( 1 + x^2 \right)dy + \left( 2y - 1 \right)dx = 0\]
\[ \Rightarrow \left( 1 + x^2 \right)dy = \left( 1 - 2y \right)dx\]
\[ \Rightarrow \frac{dy}{\left( 1 - 2y \right)} = \frac{1}{\left( 1 + x^2 \right)}dx\]
Integrating both sides, we get
\[\int\frac{1}{\left( 1 - 2y \right)}dy = \int\frac{1}{\left( 1 + x^2 \right)}dx\]
\[ \Rightarrow - \frac{1}{2}\log\left| 1 - 2y \right| = \tan^{- 1} x - \log \sqrt{C}\]
\[ \Rightarrow - \log\left| 1 - 2y \right| = 2 \tan^{- 1} x - 2\log \sqrt{C}\]
\[ \Rightarrow - 2 \tan^{- 1} x = - \log C + \log\left| 1 - 2y \right|\]
\[ \Rightarrow - 2 \tan^{- 1} x = \log \left| \frac{1 - 2y}{C} \right|\]
\[ \Rightarrow e^{- 2 \tan^{- 1} x} = \frac{1 - 2y}{C}\]
\[ \Rightarrow C e^{- 2 \tan^{- 1} x} = \left( 1 - 2y \right)\]
\[ \Rightarrow 1 - C e^{- 2 \tan^{- 1} x} = 2y\]
\[ \Rightarrow \frac{1}{2} - \frac{C}{2} e^{- 2 \tan^{- 1} x} = y\]
\[ \Rightarrow y = \frac{1}{2} + K e^{- 2 \tan^{- 1} x},\text{ where }K = - \frac{C}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the particular solution of the differential equation `e^xsqrt(1-y^2)dx+y/xdy=0` , given that y=1 when x=0
Find the particular solution of differential equation:
`dy/dx=-(x+ycosx)/(1+sinx) " given that " y= 1 " when "x = 0`
Find the particular solution of the differential equation `(1+x^2)dy/dx=(e^(mtan^-1 x)-y)` , give that y=1 when x=0.
The number of arbitrary constants in the general solution of a differential equation of fourth order are ______.
Solve the differential equation `[e^(-2sqrtx)/sqrtx - y/sqrtx] dx/dy = 1 (x != 0).`
If y = etan x+ (log x)tan x then find dy/dx
The solution of the differential equation \[\frac{dy}{dx} = \frac{x^2 + xy + y^2}{x^2}\], is
The number of arbitrary constants in the general solution of differential equation of fourth order is
Which of the following differential equations has y = x as one of its particular solution?
The general solution of a differential equation of the type \[\frac{dx}{dy} + P_1 x = Q_1\] is
Find the particular solution of the differential equation \[\frac{dy}{dx} = \frac{x\left( 2 \log x + 1 \right)}{\sin y + y \cos y}\] given that
\[\frac{dy}{dx} = \left( x + y \right)^2\]
\[\frac{dy}{dx} = \frac{y\left( x - y \right)}{x\left( x + y \right)}\]
\[\frac{dy}{dx} - y \cot x = cosec\ x\]
x2 dy + (x2 − xy + y2) dx = 0
\[\frac{dy}{dx} + 2y = \sin 3x\]
\[\frac{dy}{dx} + y = 4x\]
For the following differential equation, find a particular solution satisfying the given condition:
\[x\left( x^2 - 1 \right)\frac{dy}{dx} = 1, y = 0\text{ when }x = 2\]
For the following differential equation, find a particular solution satisfying the given condition:- \[\frac{dy}{dx} = y \tan x, y = 1\text{ when }x = 0\]
Solve the following differential equation:- \[\left( x - y \right)\frac{dy}{dx} = x + 2y\]
Solve the following differential equation:-
\[x\frac{dy}{dx} + 2y = x^2 \log x\]
Solve the following differential equation:-
\[\left( x + 3 y^2 \right)\frac{dy}{dx} = y\]
Solve the differential equation: `(d"y")/(d"x") - (2"x")/(1+"x"^2) "y" = "x"^2 + 2`
The solution of the differential equation `x "dt"/"dx" + 2y` = x2 is ______.
The general solution of the differential equation `"dy"/"dx" + y sec x` = tan x is y(secx – tanx) = secx – tanx + x + k.
Form the differential equation having y = (sin–1x)2 + Acos–1x + B, where A and B are arbitrary constants, as its general solution.
Find the general solution of y2dx + (x2 – xy + y2) dy = 0.
Find the general solution of (1 + tany)(dx – dy) + 2xdy = 0.
The differential equation for y = Acos αx + Bsin αx, where A and B are arbitrary constants is ______.
Solution of `("d"y)/("d"x) - y` = 1, y(0) = 1 is given by ______.
The solution of the equation (2y – 1)dx – (2x + 3)dy = 0 is ______.
The solution of the differential equation `("d"y)/("d"x) + (2xy)/(1 + x^2) = 1/(1 + x^2)^2` is ______.
The solution of the differential equation `x(dy)/("d"x) + 2y = x^2` is ______.
The integrating factor of `("d"y)/("d"x) + y = (1 + y)/x` is ______.
Number of arbitrary constants in the particular solution of a differential equation of order two is two.
Polio drops are delivered to 50 K children in a district. The rate at which polio drops are given is directly proportional to the number of children who have not been administered the drops. By the end of 2nd week half the children have been given the polio drops. How many will have been given the drops by the end of 3rd week can be estimated using the solution to the differential equation `"dy"/"dx" = "k"(50 - "y")` where x denotes the number of weeks and y the number of children who have been given the drops.
The value of c in the particular solution given that y(0) = 0 and k = 0.049 is ______.
Find the particular solution of the differential equation `x (dy)/(dx) - y = x^2.e^x`, given y(1) = 0.
Find the general solution of the differential equation:
`log((dy)/(dx)) = ax + by`.